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ABSTRACT

Teaching the next generation of engineers about the inner
workings of GPS receivers is difficult due to the expense
of acquiring appropriate hardware and software.  In the
past few years a number of excellent books have been
written about GPS (references 1 through 5).  But, in the
end students learn best by doing.  Even with hardware
available, trying to squeeze the development of software
into a quarter or a semester is asking a lot.  A low cost set
of hardware, along with free open source software, allows
students access to the inner workings of the receiver
without 'breaking the bank' in terms of time or money.
This article will present open source GPS receiver
software and laboratory hardware that is a straightforward

modification of a COTS receiver to interface it to a PC
bus.

The hardware and software are based on the GEC Plessey,
then Mitel, now Zarlink, chipset.  In the 1990’s GEC
introduced a board and software called the GPS Builder
™ which placed the down converter and correlator chips
on an ISA card installed on a PC.  Since the software ran
on the PC it gave the user complete control and visibility
into the operation of the receiver.  Unfortunately GEC and
Mitel found that they had to charge in excess of $1000
dollars for the board and software licenses.  This served to
limit its popularity among cash strapped universities and
individuals.

Given the success of Linux, it was apparent that complex
software development could be done on free open source
software.  This paper describes the hardware and software
architecture, the features added to allow debugging of the
code and carrier tracking loops, and plans for improving
the software, install it on other receiver hardware, use
embedded ‘x86 hardware, and to run under Open Source
real time operating systems.  A comparison will also be
made of the software using two receivers, and will show
the results of its performance.

This is similar to experiments that students could perform
using the open source software and hardware discussed
herein.  An Internet website has been set up at
http://www.home.earthlink.net/~cwkelley  to describe the
project, and to provide source code and sample input and
output data.

HARDWARE

GPS receiver hardware is complicated by the fact that
there is RF signal processing in close vicinity to digital
signals, which can interfere with the RF signal chain.  In
1995 a 2-sided board was designed and built based on the
GP 2020 chipset, which had 6 channels per chip.  While it
was possible to get it to work it was obvious that it had
problems resetting and limited functionality.  Building



high quality 4 layer surface mount component boards is
expensive and requires specialized test equipment.
Another alternative was needed.  While working with the
Canadian Marconi AllStarTM and SuperStarTM it was
noticed that it used the same chipset.  Since the
SuperStarTM OEM board is relatively inexpensive and
well built it suggested the idea of “hacking” into the
hardware to bypass the digital processing on the board,
and connect directly into a PC.  A description of how to
do this is provided on the website.  Since the SuperStarTM

GP2021 interface is set up as a ‘186, the hardware was
easy to setup.  Although it destroys a perfectly good
receiver, it seems to work well.  Versions of the “hacked”
receiver are working at both UCR and UNSW.  Now,
with hardware available for less than $200, adapting the
software to the GP2021 was the only missing part.

Figure 1 is a photograph of the hardware with the
“hacked” receiver mounted to an ISA bus experimental
card.

Figure 1
Photograph of  “hacked” GPS receiver

As shown in Figure 2, the receiver consists of an RF
"front end" chip and a digital processing chip connected
to a PC I/O interface.  The front end connects directly to
the 10MHz clock and sends a 40MHz signal to the
correlator chip.  The correlator chip appears to the PC as a
set of about 100 read and/or write registers.  The RF
signal is first down converted to about 175MHz, is sent to
a simple band pass filter, and sent back to the front end. 
The second down converter stage is at about 35MHz.  A
SAW filter is used to filter and return the signal to the
front end.  In the final stage the signal is down converted
to 4.3MHz and a 2-bit A/D converter (sign and
magnitude) is used to transmit the signal information to

the GP2021 correlator chip.  The correlator chip provides
the sample timing, which is simply the 40MHz clock
divided by 7.   The PC interface consists of an ISA I/O
board from JDR Electronics set up to address two 16-bit
ports.  One port (0x304) uses the lower 8 bits to send the
register address.  The other port (0x308) is used to read
and write 16 bits of data.  The correlator chip interface
can be set up in a number of ways.  As it is set up as an
Intel 186 interface an indeterminate amount of time is
available between latching the address and
transferring the data. 
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Figure 2
Receiver Hardware Interface

SOFTWARE

OpenSource GPS is a C program written in Borland C
(version 4.5 and later) without any embedded assembly
language.  As shown in Figure 3 the software uses a
single interrupt routine to handle the tracking loops and
find the navigation message.  All other functions are
handled using a polling method triggered by flags from
the interrupt routine.  Figure 4 shows the main software
block diagram while Figure 5 illustrates in more detail the
interrupt processing.  In order to reduce connections to the
correlator chip, the PC clock timing (interrupt 0) is taken
over and is modified to provide an interrupt every 500 to
900µs.

Figure 3
Software Block Diagram

Figure 4
Main Program

Figure 5
Interrupt Routine

Figure 6 is a file structure diagram of the software.  The
program is written in three parts.  GP2021 contains
functions that deal with communication with the
correlator chipset.  The main routine is in gpsrcvr while
gpsfuncs contains the library of GPS functions such as
satellite location by using the almanac, ephemeris,
computing the navigation solution and decoding the
navigation message.  The input file used only for input is
the rcvr_par.dat file which contains constants used by the
receiver, such as tracking loop constants for code and
carrier for pull-in and tracking along with flags for
various outputs.  The input/output files are read at the start
of the program and updated when the program exits.  The
output files record data for later analysis.
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Figure 6
OpenSource Software File Structure

As seen in Figure 7, each channel provides 4 correlation
counts.  The prompt and dither (either ahead or behind the
prompt correlator by 1/2 chip) both have in-phase "I" and
quadrature "Q" correlators.  By forming an RSS (root sum
square) of the in-phase and quadrature values one can
determine if they are lined up with the PRN code.  The in-
phase and quadrature correlator values indicate what the
phase of the signal is.  Although the source code includes
comments, it is helpful to explain in more detail how the
receiver software works.

Figure 7
Channel Block Diagram

To track the signal one does not directly 'move' the
correlators, just speed up or slow down the carrier and
code DCO's (digitally controlled oscillators) to keep the
channel locked in code and carrier phase.

The correlator read timing of the receiver is set by taking
over the PC's Int 0 which is normally used to keep the
computer real time clock up to date.  The 8254 normally
interrupts the computer about every 50ms.  This software
replaces this interrupt routine with its own
(GPS_interrupt) and sets the interrupt time to about
500µs.  Whenever the interrupt occurs, the channel data
register is checked to see which channels have dumped

correlation data.  The correlator data is read and a check is
made to see if a 99.9999 ms "tic" has occurred.  If it has,
the measurement data is stored.  Each channel is
processed based on the state the channel is in.  Figure 8
shows the channel state diagram used.

Figure 8
Channel State Diagram

State 1 is the acquisition state.  It does the code and
frequency (Doppler) search to find a high correlation
peak.  If a peak in either the prompt or delay correlator
(RSS of in-phase and quadrature) is above the threshold it
switches to state 2.  When in warm or cold start mode the
Doppler is centered on the expected value.  The search is
conducted with two loops, the inner loop is the code
search and the outer is the frequency search.  The code
search pattern is simply "slewing" the PRN generator by
adding an extra chip of delay after each correlation
sample.  Thus after 1023 samples every 1/ 2 chip in code
space has been searched.  The frequency search pattern
checks on either side of the expected frequency in integer
multiples of the Doppler search range i.e. (0, +1, -1, +2, -
2, ...)*200 Hz.  The maximum range depends on what the
receiver is doing.  The nominal value is for a warm start,
it is larger if attempting a cold start and smaller if the
receiver has a navigation fix.   Samples are taken every
millisecond.  This allows each frequency bin to be
searched in about 1 second (if it does not go into state 2).

State 2 is the confirmation state.  The confirmation state
stops the search and dwells at the code and Doppler where
the high correlation peak was found in state 1 to confirm
the presence of the signal in order to reduce the false
alarm rate.   If n of m samples (e.g. 8 of 10) are above
threshold it switches to state 3.

State 3 is the pull-in state.  The signal has been confirmed
but the frequency may be up to ~500Hz off.   The pull-in
state attempts to start tracking the signal in order to pull
the frequency in close enough that the carrier phase can
be tracked.  In addition it should be noted that in order to
reduce start-up transients the code loop is closed after 2ms
and the carrier loop is closed after 5ms.  This state is
enabled for about 1500ms, during the last 500ms of this
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time the C/No and phase errors are measured and the
program attempts to synchronize onto the edge of a data
bit.  If it confirms carrier and code tracking it switches to
state 4.  Since the frequency is likely to be very far off,
the receiver uses a combination of a frequency locked
loop FLL and a phase locked loop PLL.  As the time
progresses into the state the effect of the FLL is decreased
so that at the end of the state the PLL is dominant.  Figure
9 shows the pull-in carrier tracking block scheme.

Figure 9
Second Order PLL with Frequency Aiding

The filter is a second order PLL with first order frequency
error aiding.  The nature radian frequency ωof of the FLL

is different from the nature radian frequency ωop . These

natural frequencies are determined by the desired loop
filter noise bandwidth Bnf  and Bnp  respectively.  These

values have the following relationship:
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The initial ω , the initial carrier NCO in the PULL_IN
routine, is the data from search.  When implementing
these in software one should consider the carrier NCO
resolution.
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The figures below are actual data from a pull-in attempt
and illustrate how it works.  In Figure 10 it can be seen
that the phase is changing rapidly at the start.  As time
progresses to about 200ms the phase is changing more
slowly.  By the time one gets to about 300ms it is close to
phase lock.  From this point on one can see the data bits
as +90 and -90 degree phase transitions.  

Figure 10
Carrier Phase During Pull-in
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In Figure 11 one can see the noise in the carrier-tracking
loop.  It starts out high (due to the FLL) and transitions
down in three steps every 500ms.  At the end the effect of
the FLL is negligible and the PLL dominates.

Figure 11
Carrier DCO Settings During Pull-in

Figures 12 and 13 show the code loop performance during
pull-in.  The beginning transient can be seen in figure 12
and within 400 ms the loop has stabilized.  Figure 13
shows that the code DCO settings also indicate this initial
transient and subsequent settling.

Figure 12
Prompt and Dither Magnitudes during Pull-in

Figure 13
Code DCO Settings During Pull-in

State 4 is the normal tracking state.  The tracking loops
are aligned with and integrate over a data bit (20ms) to
track code and 1ms to track phase.  The data message is
recorded and the time is synchronized to the TOW (time
of week) of the data message.  Figure 14 illustrates the
BPSK nature of the data recovered by the tracking loop.

Figure 14
Data Bits in Tracking Loop

To reduce the code tracking noise the code-tracking loop
is aided by the carrier-tracking loop.  Figure 15 shows the
scaled error signal during tracking.  It shows no sign of
bias.

Figure 15
DLL Scaled tracking error During Tracking

Figure 16 shows the carrier DCO during tracking.  This is
provided to the tracking loop where it is divided by 1540,
the ration of the PRN code length to the wavelength of
L1.
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Figure 16
Carrier DCO During Tracking

Figure 17 illustrates the extremely tight tracking of the
code loop as it spends its time alternating between 2 code
DCO setting for the majority of the time.

Figure 17
Code DCO During Tracking

By following the space segment to user segment ICD-
GPS-200 (Interface Control Document) see reference 7
the navigation message can be interpreted and a
navigation fix in position, velocity and time can be
computed.  In order to provide accuracies on the order of
a few meters all of the corrections must be made.  These
include the Sagnac effect, relativistic effects and
troposphere and ionosphere models.  In order to determine
if these algorithms were correctly applied and provide a
way to debug the program a comparison with a
commercial receiver using the same chipset was
performed.

RECEIVER COMPARISON

The operation of OpenSource GPS was compared to a
CMC AllstarTM.  The test was conducted at UNSW by
splitting the signal from an antenna to the AllstarTM and a
PC running the OpenSource software on a “hacked”
receiver.  Since both use the same receiver chipset the

only differences should be due to the software. The
antenna location at UNSW has been surveyed so that an
absolute error can be computed.  As seen in figures 18
and 19 the number of satellites matches for only brief
periods of time.  The  VDOP, and HDOP matched closely
over most of the data set but also of course show
differences when the number of satellites used is different.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

2

4

6

8

10

12

No SVs

HDOP

VDOP

Figure 18
No. of SVs, VDOP, HDOP vs Time, AllstarTM
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Figure 19
No. of SVs, VDOP, HDOP vs Time, OpenSource  GPS

Figures 20 through 22 present the time histories of east
error, north error, and height error respectively for the
AllstarTM receiver.  Figures 23 through 25 also present the
time histories of east error, north error, and height error
respectively for the OpenSource GPS receiver.
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Figure 20
East Error, AllstarTM
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Figure 21
North Error, AllstarTM
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Figure 22
Height Error, AllstarTM
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Figure 23
East Error, OpenSource GPS
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Figure 24
North Error, OpenSource GPS
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Figure 25
Height Error, OpenSource GPS

Figures 26 and 27 illustrate the accuracy of the navigation
solutions from each receiver.    While the AllstarTM

performs very well with a bias of about 2 meters and a



dispersion of about 2m in radius, the OpenSource GPS
software has a large bias change when a new set of
satellites is used in the solution.  In addition the solution
gradually drifts during a fixed set of satellites.  The
dispersion, when the solution remains stable is about 10
meters.
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Figure 26
Position Fix Error, AllstarTM

-200 -150 -100 -50 0 50 100 150 200

-150

-100

-50

0

50

100

Horizontal Error

East (m) stdev 67.8453 mean -32.6402

N
o

rt
h

 (
m

) 
s
td

e
v
 5

2
.7

1
4

5
 m

e
a

n
 -

1
8

.6
6

9
6

Figure 27
Position Fix Error, OpenSource GPS

Current Work

From the data presented it is obvious that much more
work needs to be done.  The basic functionality of the
software has been tested but the navigation algorithms
need more testing and debugging.

Since beginning in early 2001 the website has been visited
by approximately 10000 people.  A number of students
and researchers worldwide have studied OpenSource GPS
software, and a few have “hacked” hardware.  This
collaboration has already found a number of errors and

improved the code immensely.  It is expected that, as
more people become involved, the quality of the software
and availability of hardware will improve to the point that
anyone with an interest in GPS can, for less than $200, set
up their own GPS lab.

Areas for Improvement/Plans for the Future

Obviously no program is perfect, especially when written
on one's own time without access to sophisticated test
equipment.  While it appears to work pretty well there are
a number of areas where there are problems, and other
areas where it could be greatly improved:

• Fixing the problems with the position fix
routines

• The acquisition/pull-in steps integrate over 1ms,
a longer integration time or variable integration
time may be desirable.

• The tracking loops currently integrate over 20ms,
a longer integration time or variable integration
time may be desirable.

• The C/No computation appears to be in error
(possibly a few dB low?).

• Velocity is derived from the carrier tracking
loops not from carrier phase measurements.  The
code and carrier tracking loops are only 2nd
order and could be much better.

• There is no Kalman filter in the program.

Any comments or suggestions are most welcome.  Please
direct them to Mr. Kelley at cwkelley@earthlink.net.
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